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Conditional generative models

Another type of data: graphs
3D models
Social interactions networks
Molecules
⇒ Personalized medicine?

y : "A molecule with
antimalarial properties"
Output:
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One-shot generative models

Generate the sample in one single step:
Variational Autoencoders (VAE)
Generative Adversarial Networks (GAN)
Denoising Diffusion Probabilistic Models (DDPM)
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Denoising Diffusion Probabilistic Models

An interesting type of "one-shot" model:

Input: graph G0 = (X0,E0)

...

G1 ∼ p(G1|G0) . . . GT ∼ p(GT |GT−1)

(XT−1,ET−1) ∼ pθ(G
T−1|GT )

. . .
(X0,E0) ∼ pθ(G

0|G 1)
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Diffusion process (discrete case)

Each node and edge in G0 is corrupted independently using

p(xt |xt−1) = x ′
t−1Qt
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Diffusion process (discrete case)

[Qt ]i ,j = p(xt = i |xt−1 = j)

Traditionally, Qt is the following convex combination:

Qt = αt I + (1 − αt)(1m′
)

where

m = marginal distribution of the node/edge categories
αt is a noise scheduler

α1 = 1
αT = 0
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Denoising process (discrete case)

pθ(xt−1|xt) =
∑

x∈χ p(xt−1|xt , x0 = x)pθ(x0 = x |xt)
p(xt−1|xt , x0 = x) can be computed directly
pθ(x0 = x |xt) is inferred through a neural network
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How many nodes should the graph have?

DDPMs fix the number of nodes n before denoising.
n ∼ p(n) with p(n) computed using the training set

This is problematic in conditional generation
If y correlates with n, the generation may fail
⇒ e.g. fewer atoms correlate with a low molecular weight
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Possible solution

Solution
Ninniri et. al ([NPB24]): train a separate model pε(n | y) to
compute p(n|y)
Use it to choose n before starting the generative process
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Problem number 2

Molecular optimization: change y editing G0 as little as possible.

"Logical" approach in DDPM:
Corrupt the molecule up to a certain step t < T

Change the input y
Denoise

! what if changing y requires a different amount of nodes?
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Problem number 2

Ketata et. al ([KGS+24]): corrupt G0 as GT
2
, add nodes, and

denoise.
! but what if we need less nodes?

What if we want to solve both problems at the same time?
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Insert and delete in DDPMs

DDPMs generate a graph through an iterative process: can we add
or remove items during it?
! Not trivial:

What value should we give to the inserted nodes?
Which nodes should we delete?
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Insert and delete in DDPMs

General idea:
Choose the graph size at step T , "nT"
Gradually insert/delete nodes until we reach the target size

Advantages:
Very fast algorithm
Full control over the final number of nodes
Does not depend on T
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Deletions

Let’s start with the deletions.
General idea: treat a deletion as a category itself

Qt =



DEL DEL∗

0 p(del)

"old" Qt
...

...
0 p(del)

DEL 0 . . . 0 1 0
DEL∗ 0 . . . 0 1 0
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Deletions

Issues with this formulation:
GT would have delete in it
⇒ m is not the marginal distribution anymore
Every item can be deleted
⇒ We want only nT − n0 items deleted
No item is guaranteed to be deleted
⇒ We want exactly nT − n0 items deleted
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Deletions

Solution: hybrid diffusion
nT elements are corrupted as before
n0 − nT elements are corrupted using the following Qt matrix:

Qt = zt(αtI + (1 − αt)(1m
′
)) + (1 − zt)C (1)

where zt is a delete scheduler such that z1 = 1, zT = 0, and

C =



DEL DELt
0 1

0
...

...
0 1

DEL 0 . . . 0 1 0
DELt 0 . . . 0 1 0
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Deletions

During denoising, we must re-insert the deleted nodes
Train a separate neural network pϕ(nt |Gt) to predict how
many "DEL∗" we have to re-insert
Insert pϕ(nt |Gt) "DEL∗" nodes in Gt

Compute p(Gt−1|Gt) as before
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Inserted node value

What category should a new node have once inserted?

Many possibilities:
Random

! not informative when t is small
Use a neural network
! Too complex

Sample from mx
! duplicating rather than inserting

In conclusion, it’s still an open problem
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Inserted node value

When denoising, we delete the nodes that were inserted during the
diffusion process
! in standard DDPMs, we use pθ(x0|xt). But a node inserted

during the diffusion process does not exist at t = 0!
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Inserted node value

Solution: predict the next best thing: x at the insertion step i
! pθ needs to predict the insertion step as well!

pθ(xt−1|xt) =
∑
x∈χ

p(xt−1|xt , xi = x)pθ(xi = x |xt) (2)

(3)
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(Preliminary) results
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Comclusions

Can insertions and deletions fully replace standard DDPMs? No
Conditional generation lacks a little bit;
Out-of-distribution sampling does not perform well against
"standard" DDPMs;
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Other applications

Molecular inpainting: Fix a molecular substructure and generate
a new molecule featuring it

Corrupt the graph to step t < T

At each denoising step, place the substructure’ graph in Gt

Discrete data generation
Who says that all of this only applies to graphs?
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That was all.

Thank you for your attention!

Questions?
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