Node count problems in Graph Diffusion Models

Matteo Ninniri

Pesaresi seminars

1/43

Introduction

Some interesting Generative models The problem(s) Insert and delete in DDPMs Results

Table of Contents

1 Introduction

- 2 Some interesting Generative models
- 3 The problem(s)
- Insert and delete in DDPMs

6 Results

Introduction

Some interesting Generative models The problem(s) Insert and delete in DDPMs Results

Generative models

• Learn the distribution p(data) of the dataset

Introduction

Some interesting Generative models The problem(s) Insert and delete in DDPMs Results

Generative models

- Learn the distribution p(data) of the dataset
- Learn how to generate data similar to the dataset

Conditional generative models

• Learn the distribution p(data|y)

Conditional generative models

- Learn the distribution p(data|y)
- Learn how to generate data close to the dataset featuring the desired input properties y.

Conditional generative models

- Learn the distribution p(data|y)
- Learn how to generate data close to the dataset featuring the desired input properties y.
- A textbook example: AI art

Conditional generative models

Another type of data: graphs

- 3D models
- Social interactions networks

イロト イヨト イヨト イヨト

3

8/43

Molecules

Conditional generative models

Another type of data: graphs

- 3D models
- Social interactions networks
- Molecules

 \Rightarrow Personalized medicine?

y: "A molecule with antimalarial properties" Output:

イロン 不同 とくほど 不良 とう

3

Table of Contents

Introduction

- 2 Some interesting Generative models
- 3 The problem(s)
- Insert and delete in DDPMs

5 Results

Autoregressive models

Generate the sample one node/edge at a time

11/43

э

One-shot generative models

Generate the sample in one single step:

- Variational Autoencoders (VAE)
- Generative Adversarial Networks (GAN)
- Denoising Diffusion Probabilistic Models (DDPM)

Denoising Diffusion Probabilistic Models

Diffusion process (discrete case)

Each node and edge in G_0 is corrupted independently using

$$p(\boldsymbol{x}_t|\boldsymbol{x}_{t-1}) = \boldsymbol{x}_{t-1}' \boldsymbol{Q}_t$$

<ロ > < 回 > < 画 > < 画 > < 画 > < 画 > < 画 > < 画 > < 画 > < 画 > の < や 14/43

Diffusion process (discrete case)

$$[\mathbf{Q}_t]_{i,j} = p(x_t = i | x_{t-1} = j)$$

Traditionally, Q_t is the following convex combination:

$$\boldsymbol{Q}_{t} = \alpha_{t}\boldsymbol{I} + (1 - \alpha_{t})(\boldsymbol{1}\boldsymbol{m}')$$

where

- **m** = marginal distribution of the node/edge categories
- α_t is a noise scheduler

(日) (周) (王) (王) (王)

Denoising process (discrete case)

$$p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_{t}) = \sum_{\mathbf{x}\in\chi} p(\mathbf{x}_{t-1}|\mathbf{x}_{t}, \mathbf{x}_{0} = \mathbf{x}) p_{\theta}(\mathbf{x}_{0} = \mathbf{x}|\mathbf{x}_{t})$$

• $p(\mathbf{x}_{t-1}|\mathbf{x}_{t}, \mathbf{x}_{0} = \mathbf{x})$ can be computed directly
• $p_{\theta}(\mathbf{x}_{0} = \mathbf{x}|\mathbf{x}_{t})$ is inferred through a neural network

Table of Contents

Introduction

2 Some interesting Generative models

3 The problem(s)

Insert and delete in DDPMs

5 Results

How many nodes should the graph have?

DDPMs fix the number of nodes n before denoising.

• $n \sim p(n)$ with p(n) computed using the training set

This is problematic in conditional generation

- If **y** correlates with *n*, the generation may fail
 - \Rightarrow e.g. fewer atoms correlate with a low molecular weight

Possible solution

Solution

- Ninniri et. al ([NPB24]): train a separate model p_ε(n | y) to compute p(n|y)
- Use it to choose *n* before starting the generative process

Problem number 2

Molecular optimization: change y editing G_0 as little as possible.

"Logical" approach in DDPM:

- Corrupt the molecule up to a certain step t < T
- Change the input **y**
- Denoise

!) what if changing **y** requires a different amount of nodes?

Problem number 2

Ketata et. al ([KGS⁺24]): corrupt G₀ as G_{T/2}, add nodes, and denoise.
 (!) but what if we need *less* nodes?

What if we want to solve both problems at the same time?

Table of Contents

Introduction

- 2 Some interesting Generative models
- 3 The problem(s)
- Insert and delete in DDPMs

6 Results

Insert and delete in DDPMs

DDPMs generate a graph through an iterative process: can we add or remove items during it?

(!) Not trivial:

- What value should we give to the inserted nodes?
- Which nodes should we delete?

Insert and delete in DDPMs

General idea:

- Choose the graph size at step T, " n_T "
- Gradually insert/delete nodes until we reach the target size

イロン イロン イヨン イヨン 三日

24 / 43

Advantages:

- Very fast algorithm
- Full control over the final number of nodes
- Does not depend on T

Deletions

Let's start with the deletions.

• General idea: treat a deletion as a category itself

$$\boldsymbol{Q}_{t} = \begin{pmatrix} DEL & DEL^{*} \\ 0 & p(del) \\ \\ 0 & \cdots & 0 & 1 & 0 \\ 0 & \cdots & 0 & 1 & 0 \end{pmatrix}$$

25 / 43

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Issues with this formulation:

- G_T would have delete in it
 ⇒ m is not the marginal distribution anymore
- Every item can be deleted
 - \Rightarrow We want only $n_T n_0$ items deleted
- No item is guaranteed to be deleted
 - \Rightarrow We want *exactly* $n_T n_0$ items deleted

Deletions

Solution: hybrid diffusion

- *nT* elements are corrupted as before
- $n_0 n_T$ elements are corrupted using the following \boldsymbol{Q}_t matrix:

$$\boldsymbol{Q}_{t} = z_{t}(\alpha_{t}\boldsymbol{I} + (1 - \overline{\alpha}_{t})(\boldsymbol{\mathbb{1}}\boldsymbol{m}')) + (1 - z_{t})\boldsymbol{C}$$
(1)

where z_t is a *delete scheduler* such that $z_1 = 1, z_T = 0$, and

$$\boldsymbol{C} = \begin{pmatrix} DEL & DEL_t \\ 0 & 1 \\ 0 & \vdots & \vdots \\ 0 & 0 & 1 \\ 0 & \dots & 0 & 1 \\ 0 & \dots & 0 & 1 & 0 \\ 0 & \dots & 0 & 1 & 0 \end{pmatrix}$$

During denoising, we must re-insert the deleted nodes

 Train a separate neural network p_{\u03c0}(n_t|G_t) to predict how many "DEL*" we have to re-insert

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへの

28 / 43

- Insert $p_{\phi}(n_t|G_t)$ "DEL*" nodes in G_t
- Compute $p(G_{t-1}|G_t)$ as before

Inserted node value

What category should a new node have once inserted?

◆□ → ◆□ → ◆三 → ◆三 → ● ● ● ●

29/43

Many possibilities:

Random

Inserted node value

What category should a new node have once inserted?

Many possibilities:

Random

 not informative when t is small

Inserted node value

What category should a new node have once inserted?

◆□ → ◆□ → ◆三 → ◆三 → ● ● ● ●

31/43

- Random

 not informative when t is small
- Use a neural network

Inserted node value

What category should a new node have once inserted?

32 / 43

- Random
 (!) not informative when *t* is small
- Use a neural network (!) Too complex

Inserted node value

What category should a new node have once inserted?

(日) (周) (王) (王) (王)

33 / 43

- Random

 not informative when t is small
- Use a neural network (!) Too complex
- Sample from m_x

Inserted node value

What category should a new node have once inserted?

- Random

 not informative when t is small
- Use a neural network (!) Too complex
- Sample from *m_x*
 - (!) duplicating rather than inserting

Inserted node value

What category should a new node have once inserted?

Many possibilities:

- Random

 not informative when t is small
- Use a neural network (!) Too complex
- Sample from *m_x*

(!) duplicating rather than inserting

In conclusion, it's still an open problem

Inserted node value

When denoising, we delete the nodes that were inserted during the diffusion process

(!) in standard DDPMs, we use $p_{\theta}(\mathbf{x}_0 | \mathbf{x}_t)$. But a node inserted during the diffusion process does not exist at t = 0!

Inserted node value

Solution: predict the next best thing: \mathbf{x} at the insertion step i (!) p_{θ} needs to predict the insertion step as well!

$$p_{\theta}(\boldsymbol{x}_{t-1}|\boldsymbol{x}_t) = \sum_{\boldsymbol{x}\in\boldsymbol{\chi}} p(\boldsymbol{x}_{t-1}|\boldsymbol{x}_t, \boldsymbol{x}_i = \boldsymbol{x}) p_{\theta}(\boldsymbol{x}_i = \boldsymbol{x}|\boldsymbol{x}_t)$$
(2)

(3)

Table of Contents

Introduction

- 2 Some interesting Generative models
- 3 The problem(s)
- Insert and delete in DDPMs

(Preliminary) results

Can insertions and deletions fully replace standard DDPMs? No

- Conditional generation lacks a little bit;
- Out-of-distribution sampling does not perform well against "standard" DDPMs;

Other applications

Molecular inpainting: Fix a molecular substructure and generate a new molecule featuring it

- Corrupt the graph to step t < T
- At each denoising step, place the substructure' graph in \boldsymbol{G}_t

Discrete data generation

• Who says that all of this only applies to graphs?

Thank you for your attention!

Questions?

- Mohamed Amine Ketata, Nicholas Gao, Johanna Sommer, Tom Wollschläger, and Stephan Günnemann, *Lift your molecules: Molecular graph generation in latent euclidean space*, 2024.
- Matteo Ninniri, Marco Podda, and Davide Bacciu, *Classifier-free graph diffusion for molecular property targeting*, 2024.