Node count problems in Graph Diffusion Models
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Introduction

Conditional generative models

y: "A  molecule with
antimalarial properties"
Another type of data: graphs Output:

@ 3D models

@ Social interactions networks

@ Molecules HNJ\/\/N\/
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Some interesting Generative models

Autoregressive models

Generate the sample one node/edge at a time
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Some interesting Generative models

One-shot generative models

Generate the sample in one single step:
e Variational Autoencoders (VAE)
@ Generative Adversarial Networks (GAN)
@ Denoising Diffusion Probabilistic Models (DDPM)
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Some interesting Generative models

Denoising Diffusion Probabilistic Models

An interesting type of "one-shot" model:
Input: graph Go = (Xo, Ep)
G1 ~ p(G1|Go) . Gr ~ p(GT|GT-1)

/\f\/\
RN

(Xo, Eo) ~ po(G°|G)  (X7-1, Er—1) ~ po(GTTHGT)
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Some interesting Generative models

Diffusion process (discrete case)

Each node and edge in Gy is corrupted independently using

p(xe|xe—1) = x,_, Q;
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Some interesting Generative models

Diffusion process (discrete case)

[Q:]ij = p(xt = i[xt—1 =)

Traditionally, Q; is the following convex combination:
Qt = Oéj_-l -+ (1 — at)(]lm,)

where

e m = marginal distribution of the node/edge categories
@ «y is a noise scheduler

e (V1 = 1

e T = 0
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Some interesting Generative models

Denoising process (discrete case)

Po(xt—1|xt) = erx p(xe—1|xe, Xo = x)po(x0 = x[x¢)
@ p(x¢t—1|xt,xo = x) can be computed directly

@ py(xo = x|x;) is inferred through a neural network
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The problem(s)

How many nodes should the graph have?

DDPMs fix the number of nodes n before denoising.
e 11~ p(n) with p(n) computed using the training set

This is problematic in conditional generation

o If y correlates with n, the generation may fail
= e.g. fewer atoms correlate with a low molecular weight
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The problem(s)

Possible solution

o Ninniri et. al ([NPB24]): train a separate model to
compute p(n|y)
@ Use it to choose n before starting the generative process
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The problem(s)

Problem number 2

Molecular optimization: change y editing Gp as little as possible.

"Logical" approach in DDPM:
@ Corrupt the molecule up to a certainstep t < T
@ Change the input y
@ Denoise

@ what if changing y requires a different amount of nodes?
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The problem(s)

Problem number 2

o Ketata et. al ([KGS'24]): corrupt Gy as G, add nodes, and
2

denoise.
@ but what if we need less nodes?

What if we want to solve both problems at the same time?
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Insert and delete in DDPMs

Insert and delete in DDPMs

DDPMs generate a graph through an iterative process: can we add
or remove items during it?

@ Not trivial:

@ What value should we give to the inserted nodes?
@ Which nodes should we delete?
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Insert and delete in DDPMs

Insert and delete in DDPMs

General idea:

@ Choose the graph size at step T, "ny"

e Gradually insert/delete nodes until we reach the target size
Advantages:

@ Very fast algorithm

@ Full control over the final number of nodes

@ Does not depend on T
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Insert and delete in DDPMs

Deletions

Let's start with the deletions.

o General idea: treat a deletion as a category itself

DEL DEL*

0  p(del)
"old" Q; :

Q: = 0 p(del)
DEL| O e 0 1 0
DEL* \0 . 0 1 0
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Insert and delete in DDPMs

Deletions

Issues with this formulation:

@ Gt would have delete in it
= m is not the marginal distribution anymore

@ Every item can be deleted
= We want only nt — ng items deleted

@ No item is guaranteed to be deleted
= We want exactly nt — ng items deleted

26 /43



Insert and delete in DDPMs

Deletions

Solution: hybrid diffusion
@ nT elements are corrupted as before
@ ng — nt elements are corrupted using the following Q; matrix:

Q: = z:(oel + (1 —a@)(Im')) + (1 — z)C (1)
where z; is a delete scheduler such that z; =1,z = 0, and
DEL DEL;
0 1
0

C= 0 1

DEL| O 0 1 0

DEL; \0 0 1 0
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Insert and delete in DDPMs

Deletions

During denoising, we must re-insert the deleted nodes

@ Train a separate neural network p,(n¢|G¢) to predict how
many "DEL*" we have to re-insert

o Insert py(n¢|G¢) "DEL*" nodes in G;
o Compute p(G;—_1|G;) as before
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Insert and delete in DDPMs

Inserted node value

What category should a new node have once inserted?

Many possibilities:

@ Random
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Insert and delete in DDPMs

Inserted node value

What category should a new node have once inserted?

Many possibilities:

@ Random
@ not informative when t is small

@ Use a neural network
@ Too complex

@ Sample from my
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Insert and delete in DDPMs

Inserted node value

What category should a new node have once inserted?

Many possibilities:

@ Random
@ not informative when t is small

@ Use a neural network
@ Too complex

@ Sample from my
duplicating rather than inserting

In conclusion, it's still an open problem
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Insert and delete in DDPMs

Inserted node value

When denoising, we delete the nodes that were inserted during the
diffusion process

in standard DDPMs, we use py(xo|x:). But a node inserted
during the diffusion process does not exist at t = 0!
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Insert and delete in DDPMs

Inserted node value

Solution: predict the next best thing: x at the insertion step i
@ po needs to predict the insertion step as well!

po(Xe—1|x:) = ZP(Xt—ﬂXt,Xi = X)pg(xi = x|x¢) (2)

(3)
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Comclusions

Can insertions and deletions fully replace standard DDPMs? No
o Conditional generation lacks a little bit;

@ Out-of-distribution sampling does not perform well against
"standard" DDPMs;
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Other applications

Molecular inpainting: Fix a molecular substructure and generate
a new molecule featuring it

@ Corrupt the graphtostept < T
@ At each denoising step, place the substructure’ graph in G;
Discrete data generation

@ Who says that all of this only applies to graphs?
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That was all.

Thank you for your attention!

Questions?
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