Node count problems in Graph Diffusion Models

Matteo Ninniri

Pesaresi seminars

1/43

Introduction

Table of Contents

@ Introduction

2/43

Introduction

Generative models

@ Learn the distribution p(data) of the dataset

3/43

Introduction

Generative models

@ Learn the distribution p(data) of the dataset

@ Learn how to generate data similar to the dataset

4/43

Introduction

Conditional generative models

@ Learn the distribution p(dataly)

5/43

Introduction

Conditional generative models

@ Learn the distribution p(dataly)

@ Learn how to generate data close to the dataset featuring the
desired input properties y.

6/43

Introduction

Conditional generative models

@ Learn the distribution p(dataly)

@ Learn how to generate data close to the dataset featuring the
desired input properties y.
@ A textbook example: Al art

7/43

Introduction

Conditional generative models

Another type of data: graphs
@ 3D models
@ Social interactions networks

@ Molecules

8/43

Introduction

Conditional generative models

y: "A molecule with
antimalarial properties"
Another type of data: graphs Output:

@ 3D models

@ Social interactions networks

@ Molecules HNJ\/\/N\/
X

= Personalized medicine? : 1
/
cl N

9/43

Some interesting Generative models

Table of Contents

© Some interesting Generative models

10/43

Some interesting Generative models

Autoregressive models

Generate the sample one node/edge at a time

£ £ £ £
|1 |2 © 13) |4 &)
' © Yoo g — &
J L . © J . © ©1
£21-+] [3] 1-+] E41-»]
'd Y ' Y
T T
-==-* Noise from N(0,I) © (Q
© © ©
© Node: Atom e s c N s
32-+ 42-+
— Edge: Single bond P ﬂ ~ P ﬂ' -~
© @
= Edge: Double bond -
 Edge: No bond G J &9
— Affine Transformation for Node Generation fa3-+])
@
=== Affine Transformation for Edge Generation)
Sampling / Training Order G-

11/43

Some interesting Generative models

One-shot generative models

Generate the sample in one single step:
e Variational Autoencoders (VAE)
@ Generative Adversarial Networks (GAN)
@ Denoising Diffusion Probabilistic Models (DDPM)

12/43

Some interesting Generative models

Denoising Diffusion Probabilistic Models

An interesting type of "one-shot" model:
Input: graph Go = (Xo, Ep)
G1 ~ p(G1|Go) . Gr ~ p(GT|GT-1)

/\f\/\
RN

(Xo, Eo) ~ po(G°|G) (X7-1, Er—1) ~ po(GTTHGT)

13/43

Some interesting Generative models

Diffusion process (discrete case)

Each node and edge in Gy is corrupted independently using

p(xe|xe—1) = x,_, Q;

14 /43

Some interesting Generative models

Diffusion process (discrete case)

[Q:]ij = p(xt = i[xt—1 =)

Traditionally, Q; is the following convex combination:
Qt = Oéj_-l -+ (1 — at)(]lm,)

where

e m = marginal distribution of the node/edge categories
@ «y is a noise scheduler

e (V1 = 1

e T = 0

15/43

Some interesting Generative models

Denoising process (discrete case)

Po(xt—1|xt) = erx p(xe—1|xe, Xo = x)po(x0 = x[x¢)
@ p(x¢t—1|xt,xo = x) can be computed directly

@ py(xo = x|x;) is inferred through a neural network

16 /43

The problem(s)

Table of Contents

© The problem(s)

17 /43

The problem(s)

How many nodes should the graph have?

DDPMs fix the number of nodes n before denoising.
e 11~ p(n) with p(n) computed using the training set

This is problematic in conditional generation

o If y correlates with n, the generation may fail
= e.g. fewer atoms correlate with a low molecular weight

18/43

The problem(s)

Possible solution

o Ninniri et. al ([NPB24]): train a separate model to
compute p(n|y)
@ Use it to choose n before starting the generative process

19/43

The problem(s)

Problem number 2

Molecular optimization: change y editing Gp as little as possible.

"Logical" approach in DDPM:
@ Corrupt the molecule up to a certainstep t < T
@ Change the input y
@ Denoise

@ what if changing y requires a different amount of nodes?

20 /43

The problem(s)

Problem number 2

o Ketata et. al ([KGS'24]): corrupt Gy as G, add nodes, and
2

denoise.
@ but what if we need less nodes?

What if we want to solve both problems at the same time?

21/43

Insert and delete in DDPMs

Table of Contents

@ Insert and delete in DDPMs

22/43

Insert and delete in DDPMs

Insert and delete in DDPMs

DDPMs generate a graph through an iterative process: can we add
or remove items during it?

@ Not trivial:

@ What value should we give to the inserted nodes?
@ Which nodes should we delete?

23/43

Insert and delete in DDPMs

Insert and delete in DDPMs

General idea:

@ Choose the graph size at step T, "ny"

e Gradually insert/delete nodes until we reach the target size
Advantages:

@ Very fast algorithm

@ Full control over the final number of nodes

@ Does not depend on T

24 /43

Insert and delete in DDPMs

Deletions

Let's start with the deletions.

o General idea: treat a deletion as a category itself

DEL DEL*

0 p(del)
"old" Q; :

Q: = 0 p(del)
DEL| O e 0 1 0
DEL* \0 . 0 1 0

25 /43

Insert and delete in DDPMs

Deletions

Issues with this formulation:

@ Gt would have delete in it
= m is not the marginal distribution anymore

@ Every item can be deleted
= We want only nt — ng items deleted

@ No item is guaranteed to be deleted
= We want exactly nt — ng items deleted

26 /43

Insert and delete in DDPMs

Deletions

Solution: hybrid diffusion
@ nT elements are corrupted as before
@ ng — nt elements are corrupted using the following Q; matrix:

Q: = z:(oel + (1 —a@)(Im')) + (1 — z)C (1)
where z; is a delete scheduler such that z; =1,z = 0, and
DEL DEL;
0 1
0

C= 0 1

DEL| O 0 1 0

DEL; \0 0 1 0

27 /43

Insert and delete in DDPMs

Deletions

During denoising, we must re-insert the deleted nodes

@ Train a separate neural network p,(n¢|G¢) to predict how
many "DEL*" we have to re-insert

o Insert py(n¢|G¢) "DEL*" nodes in G;
o Compute p(G;—_1|G;) as before

28 /43

Insert and delete in DDPMs

Inserted node value

What category should a new node have once inserted?

Many possibilities:

@ Random

20 /43

Insert and delete in DDPMs

Inserted node value

What category should a new node have once inserted?

Many possibilities:

@ Random
@ not informative when t is small

30/43

Insert and delete in DDPMs

Inserted node value

What category should a new node have once inserted?

Many possibilities:

@ Random
@ not informative when t is small

o Use a neural network

31/43

Insert and delete in DDPMs

Inserted node value

What category should a new node have once inserted?

Many possibilities:

@ Random
@ not informative when t is small

@ Use a neural network
@ Too complex

32/43

Insert and delete in DDPMs

Inserted node value

What category should a new node have once inserted?

Many possibilities:

@ Random
@ not informative when t is small

@ Use a neural network
@ Too complex
@ Sample from my

33/43

Insert and delete in DDPMs

Inserted node value

What category should a new node have once inserted?

Many possibilities:

@ Random
@ not informative when t is small

@ Use a neural network
@ Too complex

@ Sample from my
duplicating rather than inserting

34 /43

Insert and delete in DDPMs

Inserted node value

What category should a new node have once inserted?

Many possibilities:

@ Random
@ not informative when t is small

@ Use a neural network
@ Too complex

@ Sample from my
duplicating rather than inserting

In conclusion, it's still an open problem

35/43

Insert and delete in DDPMs

Inserted node value

When denoising, we delete the nodes that were inserted during the
diffusion process

in standard DDPMs, we use py(xo|x:). But a node inserted
during the diffusion process does not exist at t = 0!

36 /43

Insert and delete in DDPMs

Inserted node value

Solution: predict the next best thing: x at the insertion step i
@ po needs to predict the insertion step as well!

po(Xe—1|x:) = ZP(Xt—ﬂXt,Xi = X)pg(xi = x|x¢) (2)

(3)

37/43

Table of Contents

e Results

38/43

2D view 2D view

CH

4

(=] S

39/43

Comclusions

Can insertions and deletions fully replace standard DDPMs? No
o Conditional generation lacks a little bit;

@ Out-of-distribution sampling does not perform well against
"standard" DDPMs;

40/ 43

Other applications

Molecular inpainting: Fix a molecular substructure and generate
a new molecule featuring it

@ Corrupt the graphtostept < T
@ At each denoising step, place the substructure’ graph in G;
Discrete data generation

@ Who says that all of this only applies to graphs?

41 /43

That was all.

Thank you for your attention!

Questions?

42/43

References.

[Mohamed Amine Ketata, Nicholas Gao, Johanna Sommer, Tom
Wollschlager, and Stephan Giinnemann, Lift your molecules:
Molecular graph generation in latent euclidean space, 2024.

[Matteo Ninniri, Marco Podda, and Davide Bacciu,
Classitier-free graph diffusion for molecular property targeting,
2024.

43/43

	Introduction
	Some interesting Generative models
	The problem(s)
	Insert and delete in DDPMs
	Results

	1.Plus:
	1.Reset:
	1.Minus:
	1.EndRight:
	1.StepRight:
	1.PlayPauseRight:
	1.PlayRight:
	1.PauseRight:
	1.PlayPauseLeft:
	1.PlayLeft:
	1.PauseLeft:
	1.StepLeft:
	1.EndLeft:
	anm1:
	1.48:
	1.47:
	1.46:
	1.45:
	1.44:
	1.43:
	1.42:
	1.41:
	1.40:
	1.39:
	1.38:
	1.37:
	1.36:
	1.35:
	1.34:
	1.33:
	1.32:
	1.31:
	1.30:
	1.29:
	1.28:
	1.27:
	1.26:
	1.25:
	1.24:
	1.23:
	1.22:
	1.21:
	1.20:
	1.19:
	1.18:
	1.17:
	1.16:
	1.15:
	1.14:
	1.13:
	1.12:
	1.11:
	1.10:
	1.9:
	1.8:
	1.7:
	1.6:
	1.5:
	1.4:
	1.3:
	1.2:
	1.1:
	1.0:
	0.Plus:
	0.Reset:
	0.Minus:
	0.EndRight:
	0.StepRight:
	0.PlayPauseRight:
	0.PlayRight:
	0.PauseRight:
	0.PlayPauseLeft:
	0.PlayLeft:
	0.PauseLeft:
	0.StepLeft:
	0.EndLeft:
	anm0:
	0.48:
	0.47:
	0.46:
	0.45:
	0.44:
	0.43:
	0.42:
	0.41:
	0.40:
	0.39:
	0.38:
	0.37:
	0.36:
	0.35:
	0.34:
	0.33:
	0.32:
	0.31:
	0.30:
	0.29:
	0.28:
	0.27:
	0.26:
	0.25:
	0.24:
	0.23:
	0.22:
	0.21:
	0.20:
	0.19:
	0.18:
	0.17:
	0.16:
	0.15:
	0.14:
	0.13:
	0.12:
	0.11:
	0.10:
	0.9:
	0.8:
	0.7:
	0.6:
	0.5:
	0.4:
	0.3:
	0.2:
	0.1:
	0.0:

